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Abstract
We present a rigorous derivation of a real space full-potential multiple-scattering theory
(FP-MST), valid both for continuum and bound states, that is free from the drawbacks that up to
now have impaired its development, in particular the need to use cell shape functions and
rectangular matrices. In this connection we give a new scheme to generate local basis functions
for the truncated potential cells that is simple, fast, efficient, valid for any shape of the cell and
reduces to the minimum the number of spherical harmonics in the expansion of the scattering
wavefunction. This approach provides a straightforward extension of MST in the muffin-tin
(MT) approximation, with only one truncation parameter given by the classical relation
lmax = k Rb, where k is the photo-electron wavevector and Rb the radius of the bounding sphere
of the scattering cell. Some numerical applications of the theory are presented, both for
continuum and bound states.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Multiple-scattering theory (MST) is a technique for solving a
linear partial differential equation over a region of space with
certain boundary conditions. It is implemented by dividing
the space into non-overlapping domains (cells), solving the
differential equation separately in each of the cells and then
assembling together the partial solutions into a global solution
that is continuous and smooth across the whole region and
satisfies the given boundary conditions.

As such, MST has been applied to the solution of
many problems drawn both from classical as well as
quantum physics, ranging from the study of membranes and
electromagnetism to the quantum-mechanical wave equation.
In quantum mechanics it has been widely used to solve
the Schrödinger equation (SE) (or the associated Lippmann–
Schwinger equation (LSE)) both for scattering and bound
states. It was proposed originally by Korringa and by Kohn
and Rostoker (KKR) as a convenient method for calculating
the electronic structure of solids [1, 2] and was later extended
to polyatomic molecules by Slater and Johnson [3]. A
characteristic feature of the method is the complete separation

between the potential aspect of the material under study,
embodied in the cell scattering power, from the structural
aspect of the problem, reflecting the geometrical position of
the atoms in space.

Applications of the KKR method were first made within
the so-called muffin-tin (MT) approximation for the potential.
In this approximation the potential is confined within non-
overlapping spheres, where it is spherically symmetrized, and
takes a constant value in the interstitial region. Moreover,
although spherical symmetry is not formally necessary, the
condition that the bounding spheres do not overlap was thought
to be necessary for the validity of the theory. Despite this
approximation the method is complicated and demanding from
a numerical point of view and as a band-structure method it
was therefore superseded by more efficient linearized methods,
such as the linearized muffin-tin-orbital method (LMTO) [4]
and the linearized augmented-plane-wave method (LAPW) [5].

Full-potential versions of these band methods have also
been introduced in recent years. However, none of these
methods can match the power and versatility of a full-potential
method based on the formalism of MST, either in terms of
providing a complete solution of the SE or in the range
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of problems that could be treated. In particular, none of
these methods leads easily to the construction of the Green’s
function, which is indispensable in the study of a number of
properties of many physical systems.

Due to these reasons, in the last two decades, the
KKR method has experienced a revival in the framework
of the Green’s function method (KKR-GF). Indeed, due
to the introduction of the complex energy integration, it
was found that the method is well suited for ground-
state calculations, with an efficiency comparable to typical
diagonalization methods. In this way a host of problems
became tractable, ranging from solids with reduced symmetry
(such as e.g. isolated impurities in ordered crystal, surfaces,
interfaces, layered systems, etc) to randomly disordered alloys
in the coherent potential approximation (CPA).

At the same time it soon became clear that the MT
approximation was not adequate to the treatment of systems
with reduced symmetry or for the calculation of lattice
forces and relaxation. In order to deal with these problems
a number of groups developed a full-potential (FP) KKR-
GF method, obtaining very good results in the framework
of the generalized-gradient approximation scheme (GGA),
comparable with full-potential LAPW method (FLAPW), as
far as concerned total energy calculations, lattice forces,
relaxation around an impurity, ([6, 7] and references therein).

In this development the authors took an empirical attitude
toward some fundamental problems related to the extension of
MST to the full-potential case, such as the strongly debated
question of the l-convergence of the theory or the need to
converge ‘internal’ sums arising from the re-expansion of
the free Green’s function around two sites, which entails the
unwanted feature of the introduction of rectangular matrices
into the theory [8]. Without getting involved into ab initio
questions, they just use square matrices for the structural
Green’s function Gnn′

L L ′(E) needed to calculate the Green’s
function of the system (see e.g. equations (6) and (9) in [7])
and truncate the l-expansion to lmax = 3 or 4, obtaining in this
way the same accuracy as the FLAPW method.

Some observations are in order at this point. First, the FP
method in the framework of MST has been initially developed
only for periodic systems in two or three dimensions and for
states below the Fermi level. To our knowledge, its extension
to treat bound and continuum states of polyatomic molecules
and in general real space applications of the method have
progressed very slowly and have been scarce. Secondly, the
generation of the local solutions of the SE with truncated cells
in the FP extension of the MST has up to now involved the
expansion of the cell shape function in spherical harmonics,
which might create convergence problems, as discussed below.
Thirdly, the FP extension of MST has generated a lot of
controversies that have gone on for more than thirty years [9].
Some of the problems have found a solution and we refer
the reader to the book of Gonis and Butler [10] for a
comprehensive review of the state of the art in this field (in
particular see their chapter 6). However, questions such as the
l-convergence of the theory or the use of square matrices are
still a matter of debate and some rigorous answer should be
given to them.

For all these reasons, applications to states well above
the Fermi energy, as required in the simulations of x-ray
spectroscopies, such as absorption, photo-emission, anomalous
scattering, etc . . ., have been scarce.

The purpose of the present paper is the rigorous derivation
of a real space FP-MST, valid both for continuum and bound
states, that is free from the drawbacks hinted to above, in
particular the need to use cell shape functions and rectangular
matrices. In connection with this we shall present a new
scheme to generate local basis functions for the truncated
potential cells that is simple, fast, efficient, valid for any shape
of the cell and reduces to the minimum the number of spherical
harmonics in the expansion of the scattering wavefunction.
Finally we shall also address the problem of the l-convergence
of the theory, giving a positive answer to this debated question.
A preliminary and partial account of this latter has been
presented in [11].

2. Local basis functions for single truncated potential
cells

A characteristic feature of MST is that it does not rely on a
finite basis set for the expansion of the global wavefunction
inside each cell as all other methods of electronic structure
calculations do. Instead it relies on expanding the global
solution in terms of local solutions of the Schrödinger equation
at the energy of interest, which can be regarded as an
optimally small, energy adapted basis set. Therefore it is
essential for the practical implementation of the theory to
devise an efficient numerical method to generate them. We
shall consider Williams and Morgan (WM) basis functions
�L(r) [12] which inside each cell are local solutions of the
SE and behave at the origin as JL(r) for r → 0. Throughout
the paper we shall use real spherical harmonics and shall put
for short JL (r; k) ≡ jl(kr)YL(r̂), NL (r; k) ≡ nl(kr)YL(r̂)
and H̃ +

L (r; k) ≡ −ikh+
l (kr)YL(r̂), where jl, nl , hl denote

respectively spherical Bessel, Neumann and Hankel functions
of order l. The truncated cell potential V (r, r̂) is defined to
coincide with the global system potential inside the cell and
to be equal to zero (or to a constant) outside. As mentioned
in the introduction we want to avoid the expansion of the
truncated cell shape function (or equivalently of the truncated
potential) in spherical harmonics due to convergence problems.
However we observe that, even if the potential has a step, the
wavefunction and its first derivative are continuous, so that
its angular momentum (AM) expansion is well behaved and
even converges uniformly in r̂ [13]. Therefore we can safely
write �L(r) = ∑

L ′ RL ′ L(r)YL ′(r̂) and this expression can be
integrated term by term under integral sign.

2.1. Three-dimensional Numerov method

In order to generate the basis functions we write the SE in polar
coordinates for the function PL (r) = r�L(r)

[
d2

dr 2
+ E − V (r, r̂)

]

PL (r, r̂) = 1

r 2
L̃2 PL(r, r̂) (1)
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where L̃2 is the angular momentum operator, whose action on
PL(r, r̂) can be calculated as

L̃2 PL (r, r̂) =
∑

L ′
l ′(l ′ + 1)r RL ′ L(r)YL ′(r̂). (2)

Equation (1) in the variable r looks like a second order
equation with an inhomogeneous term. Accordingly we use
Numerov’s method to solve it. As is well known, putting
f L
i, j = PL(ri , r̂ j ) and dropping for simplicity the index L, the

associated three point recursion relation is

Ai+1, j fi+1, j − Bi, j fi, j + Ai−1, j fi−1, j = gi, j − h6

240
f vi
i, j

where,

Ai, j = 1 − h2

12
vi, j

Bi, j = 2 + 5h2

6
vi, j = 12 − 10Ai, j

vi, j = V (ri , r̂ j )− E

gi, j = h2

12
[qi+1, j + 10qi, j + qi−1, j ]

qi, j = 1

r 2
i

∑

L ′
l ′(l ′ + 1)ri RL ′ L(ri )YL ′(r̂ j).

Here i is an index of radial mesh and j an index of angular
points on a Lebedev surface grid [14]. Obviously ri RL ′L (ri) =∑

j w j PL (ri , r̂ j )YL ′(r̂ j ), where w j is the weight function for
angular integration associated with the chosen grid. The
number of surface points NLeb is given by NLeb ≈ (2lmax +
1)2/3 as a function of the maximum angular momentum
used [15], taking into account that one integrates the product
of two spherical harmonics. Only the inhomogeneous term
qi+1, j in the recurrence relation, containing the still unknown
term fi+1, j , prevents us to solve the equation by iteration,
from the knowledge of fi, j and fi−1, j at all the angular points.
This difficulty is easily overcome by introducing the backward
second derivative formula [16]

q ′′
i, j = qi, j − 2qi−1, j + qi−2, j

h2
+ hq ′′′

i, j − 7h2

12
q ′′′′

i, j (3)

so that

gi, j = h2

12

[
qi+1, j − 2qi + qi−1, j

h2
h2 + 12qi, j

]

∼ h2

12

[(

q ′′
i, j + h2

12
q ′′′′

i, j

)

h2 + 12qi, j

]

∼ h2

12

[
13qi, j − 2qi−1, j + qi−2, j

] + h5

12
q ′′′

i, j − h6

24
q iv

i, j . (4)

The appearance of the third r derivative of q ′′′
i , which is strictly

infinite at the step point, does not cause practical problems.
Although not necessary, one can always assume a smoothing
of the potential at the cell boundary à la Becke [17], reducing
at the same time the mesh h, so that the error at that particular
step point is negligible.

In this way, at the cost of a small error O(h5) and the
introduction of a further backward point (three points fi, j ,
fi−1, j and fi−2, j are now involved), the three-dimensional
discretized equation can be solved along the radial direction
for all angles in an onion-like way, provided the expansion (2)
is performed at each new radial mesh point. We use a log-
linear mesh ρ = αr + β ln r , to reduce numerical errors
around the origin and the bounding sphere [18]. This modified
Numerov method is much faster and requires a smaller memory
space than the corresponding cell methods based on the shape
function and/or the phase functions to generate the local
solutions PL(r). Details are discussed in [19].

Figure 1 shows the comparison between the analytical
solution and the numerical one for certain directions in the
special case of the potential V (x, y, z) = −0.05θ(|x |− Rc)−
0.1θ(|y| − Rc) − 0.15θ(|z| − Rc). Here V is given in Ryd,
θ is the step function, Rc = 3.78 au = 2.0 Å, the energy
E = 0.3 Ryd, lmax = 7 and the number of surface points on a
Lebedev grid is 266.

It is easy to convince oneself that the above method for
generating basis functions can also be used to solve the Poisson
equation for the Coulomb potential, starting from a given
charge density distribution partitioned on the same system of
space-filling cells as the potential [19].

3. Multiple-scattering equation: scattering and
bound states

3.1. Scattering states

We begin by presenting the derivation of MSE for scattering
states. In this case we seek a solution of the SE continuous
in the whole space with its first derivatives, satisfying the
asymptotic boundary condition

ψ(r; k) �
(

k

16π3

) 1
2
[

eik·r + f (r̂; k)
eikr

r

]

(5)

where k is the photo-electron wavevector and f (r̂; k) is
the scattering amplitude. The factor (k/16π3)1/2 takes into
account the normalization of the scattering states to one state
per Ryd. In the spirit of MST we partition the space in
terms of non-overlapping space-filling cells 	 j with surfaces
Sj and centers at R j . Accordingly we partition the overall
space potential V (r) into cell potentials, such that V (r) =∑

j v j (r j ), where v j (r j ) takes the value of V (r) for r inside
cell j and vanishes elsewhere. (In reality, the zero value of the
potential outside the cell is not necessary and can be replaced
by any constant. The results will not depend on this particular
value. However we shall deal here only with zero value.) Here
and in the following r j = r − R j . The partition is assumed
to satisfy the requirement that the shortest inter-cell vector
Ri j = Ri − R j joining the origins of the nearest neighbors
cells i and j , is larger than any intra-cell vector ri or r j , when
r is inside cell i or cell j . If necessary, empty cells can be
introduced to satisfy this requirement. We also assume that
there exists a finite neighborhood around the origin of each

3
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Figure 1. Real part of the numerical solution of the SE along certain directions for the separable truncated potential given in the text,
compared to the analytical one [19].

cell lying in the domain of the cell [9]. We then start from
the following identity involving surface integrals in dr̂ ≡ dσ

N∑

j=1

∫

S j

[
G+

0 (r
′ − r; k)∇ψ(r; k)

− ψ(r; k)∇G+
0 (r

′ − r; k)
] · n j dσ j

=
∫

So

[
G+

0 (r
′ − r; k)∇ψ(r; k)

− ψ(r; k)∇G+
0 (r

′ − r; k)
] · no dσo. (6)

Here 	o = ∑
j 	 j , with surface So, centered at the origin o

and G+
0 (r

′ − r; k) is the free Green’s function with outgoing
wave boundary conditions satisfying the equation (∇2 +
k2)G+

0 (r
′ − r; k) = δ(r′ − r), where k2 = E . This identity is

valid for all r′ lying in the neighborhood of the origin of each
cell, since in this case the integrands are continuous with their
first derivatives.

For the convenience of the reader we recall the well known
expansions [10]

eik·r = 4π
∑

L

ilYL (k̂)JL (r; k) (7)

G+
0 (r

′ − r; k) ≡ G+
0 (r

′
i − ri ; k)

=
∑

L

JL (r′
i; k)H̃ +

L (ri ; k) (r ′
i < ri ) (8)

=
∑

L

JL(ri ; k)H̃ +
L (r

′
i ; k) (r ′

i > ri ). (9)

The heart of MST is the introduction of the functions
�L(r j ; k)which inside cell j are local solutions of the SE with
potential v j (r j) behaving as JL(r j ; k) for r j → 0. They form
a complete set of basis functions such that the global scattering
wavefunction can be locally expanded as [9]

ψ(r j ; k) =
∑

L

A j
L(k)�L (r j ; k) (10)

where we have underlined the k dependence of �L(r j ; k)
through its behavior at the origin.

In order to find the asymptotic behavior in the outer
region C	o we introduce the scattering functions ψL (ro; k) in
response to an exciting wave of angular momentum L:

ψL(ro; k) = JL(ro; k)

+
∫

G+
0 (ro − r′

o; k)V (r′
o)ψL (r′

o; k) d3r ′
o. (11)

For the asymptotic behavior in the outer region C	o, under
the assumption of short range potentials (i.e. potentials that
behave like 1/r 1+ε with positive ε at great distances), letting
ro → ∞ and using expansion (9) in equation (11) we find

ψ(ro; k) =
∑

L

Ão
L(k)

[

JL(ro; k)+
∑

L ′
H̃ +

L ′(ro; k)T o
L ′L

]

(12)

where, in order to impose the asymptotic behavior in
equation (5), Ão

L = i lYL(k̂)(k/π)1/2 and T o
L L ′ is the T -matrix

for the whole cluster.

4
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In general for short range potentials decaying slowly, the
asymptotic behavior in equation (12) is reached only at a great
distance from the origin of the coordinates (usually at the
center of the atomic cluster under study). In order to limit
the number of cells, so that the surface So just surrounds the
cluster, we introduce the local solution

�L(ro; k) =
∑

L ′
Ro

L ′ L(ro)YL ′(r̂o) (13)

in the outer region C	o, which can be obtained by inward
integration of the SE starting from the appropriate asymptotic
value H̃ +

L ′(ro; k). Therefore we take here

ψ(ro; k) =
∑

L

[
Ão

L(k)JL(ro; k)+�L (ro; k)Ao
L(k)

]
. (14)

Notice that the function �L (ro; k) in equation (13) (and
consequently Ro

L ′L(ro)) is complex, unlike the functions
�L(ri ; k) that can be taken real, if the potential is real. If the
potential has a Coulomb tail, the spherical Bessel and Hankel
functions should be replaced by the corresponding regular and
irregular solutions FL(ro; k) and GL(ro; k) of the radial SE
with a Coulomb potential.

Insertion of the expressions (10) and (14) into the
identity (6) provides a set of algebraic equations (known as
MSE) that determine the expansion coefficients A j

L(k) and the
Ao

L(k) in such a way that the local representations are smoothly
continuous across the common boundary of contiguous cells.
Indeed, taking r′ in the neighborhood of the origin of cell
i 
= o, using the expansion (8) (since r is confined to lie on the
cell surfaces), and putting to zero the coefficients of JL(r′

i ; k)
due to their linear independence, we readily arrive at the MST
compatibility equations for the amplitudes A j

L(k) and Ao
L ′(k)

∑

j L ′
H i j

L L ′ A
j
L ′(k) =

∑

L ′

[
Mio

L L ′ Ão
L ′(k)+ Nio

L L ′ Ao
L ′(k)

]
(15)

where

H i j
L L ′ =

∫

S j

[H̃ +
L (ri ; k)∇�L ′(r j; k)

− �L ′(r j ; k)∇ H̃ +
L (ri ; k)] · n j dσ j

Mio
L L ′ =

∫

So

[H̃ +
L (ri ; k)∇ JL ′(ro; k)

− JL ′(ro; k)∇ H̃ +
L (ri ; k)] · no dσo

Nio
L L ′ =

∫

So

[H̃ +
L (ri; k)∇�L ′(ro; k)

− �L ′(ro; k)∇ H̃ +
L (ri ; k)] · no dσo.

A further set equation is obtained by taking r′ inside the
outer region C	o, using the expansion (9) (remembering that
ro < r′

o, since ro lies on So). By putting to zero the coefficients
of H̃ +

L (r
′
o; k) we obtain

∑

j L ′
K oj

L L ′ A
j
L ′(k) =

∑

L ′

[
M̃oo

L L ′ Ão
L ′(k)+ Ñoo

L L ′ Ao
L ′(k)

]
(16)

where

K oj
L L ′ =

∫

S j

[JL(ro; k)∇�L ′(r j ; k)

− �L ′(r j ; k)∇ JL(ro; k)] · n j dσ j

M̃oo
L L ′ = δL L ′

∫

So

[JL(ro; k)∇ JL ′(ro; k)

− JL ′(ro; k)∇ JL(ro; k)] · no dσo

Ñoo
L L ′ =

∫

So

[JL(ro; k)∇�L ′(ro; k)

− �L ′(ro; k)∇ JL(ro; k)] · no dσo.

From the above derivation it is clear that the set of
equations (15) and (16) determines the amplitudes A j

L(k) and
Ao

L(k) in such a way that the local representations of the global
solution at the boundary of two contiguous cells are smoothly
continuous.

The usual derivation of the MSE now proceeds by re-
expanding H̃ +

L (ri ; k) and JL(ro; k) around center j by use of
the equations [10, 20]

H̃ +
L (ri; k) =

∑

L ′
Gi j

L L ′ JL ′(r j ; k) (Ri j > r j ) (17)

JL (ro; k) =
∑

L ′
J oj

L L ′ JL ′(r j; k) (no cond.) (18)

H̃ +
L (ri ; k) =

∑

L ′
J io

L L ′ H̃ +
L ′(ro; k) (ro > Rio) (19)

where Gi j
L L ′ are the free electron propagator in the site and

angular momentum basis (KKR real space structure factors)
given by

Gi j
L L ′ = 4π

∑

L ′′
C(L, L ′; L ′′)i l−l′+l′′ H̃ +

L ′′(Ri j; k) (20)

and J i j
L L ′ is the translation operator

J i j
L L ′ = 4π

∑

L ′′
C(L, L ′; L ′′)i l−l′+l′′ JL ′′(Ri j; k) (21)

In these formulae the quantities C(L, L ′; L ′′) are the real basis
Gaunt coefficients given by

C(L, L ′; L ′′) =
∫

YL(	)YL ′(	)YL ′′(	)d	. (22)

In the following we shall also need the quantity

Ni j
L L ′ = 4π

∑

L ′′
C(L, L ′; L ′′)i l−l′+l′′ NL ′′ (Ri j; k). (23)

The re-expansions series (17), (18) and (19) are known
to be absolutely convergent under the indicated conditions.
Unfortunately they introduce further expansion parameters
into the theory (with related convergence problems) that are
actually unnecessary, as shown below.

We in fact observe that the integrals over the surfaces
of the various cells j can be calculated over the surfaces
of the corresponding bounding spheres (with radius R j

b ) by
application of the Green’s theorem, since both H̃ +

L (r; k) and
�L(r; k) satisfy the Helmholtz equation (∇2 + k2)F(r) = 0

5
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outside the domain of the cell. We then use the following
relations

∫

S j

YL ′(r̂ j )H̃
+
L (ri; k) dσ j = (R j

b )
2Gi j

L L ′ jl′(k R j
b ) (24)

∫

S j

YL ′(r̂ j )∇ H̃ +
L (ri ) · n j dσ j = (R j

b )
2Gi j

L L ′
d

dR j
b

jl′(k R j
b )

(25)
which are exact for all L provided |ri − r j | = Ri j > r j for
r lying on the surface Sj . This is a consequence of the fact
that under this condition the series in equation (17) converges
absolutely. By use of the Weierstrass criterion, it is also
uniformly convergent in the entire solid angle domain and can
therefore be integrated term by term [21] (this property is also
true for the series derived with respect to r).

We get similar relations for the other two expansions
simply by replacing Gi j

L L ′ by J i j
L L ′ for re-expansion (18). For

re-expansion (19) we instead replace Gi j
L L ′ by J io

L L ′ and jl(k R j
b )

by h̃+
l (k R j

b ).
By inserting in equation (15) the expression for the basis

functions expanded in spherical harmonics (we shall suppress
the site indices whenever a relation refers to both sites i and
site o)

�L(r; k) =
∑

L ′
RL ′ L(r)YL ′(r̂) (26)

and using the relations (24), (25) and similar we finally obtain

∑

L ′
Ei

L L ′ Ai
L ′(k)+

j 
=i∑

j,L ′,L ′′
Gi j

L L ′′ S
j
L ′′ L ′ A

j
L ′(k)

−
∑

L ′ L ′′
J io

L L ′ Eo
L ′L ′′ Ao

L ′′(k) = −I i
L(k) (27)

j 
=o∑

j,L ′,L ′′
J oj

L L ′′ S
j
L ′′ L ′ A

j
L ′(k)−

∑

L ′
So

L L ′ Ao
L ′(k) = 0. (28)

In the above equations we have defined the quantities

EL L ′ = (Rb)
2W [−ikh+

l , RL L ′ ] (29)

SL L ′ = (Rb)
2W [ jl, RL L ′ ] (30)

for the cells 	 j and for the outer region C	o. The Wronskians
W [ f, g] = f g′ − g f ′ are calculated at R j

b and Ro
b respectively

and reduce to diagonal matrices for MT potentials. In order to
derive these MS equations we have used the identity
∫

So

[H̃ +
L ′(ro; k)∇ JL(ro; k)− JL (ro; k)∇ H̃ +

L ′(ro; k)] · n j dσo

= − δL L ′ (31)

and the relation

∑

L ′
Ão

L ′(k)J io
L L ′ = i lYL(k)eik·Rio

√
k

π
= I i

L(k) (32)

which is obtained from equation (21) by observing that
∑

L ′
C(L, L ′; L ′′)YL ′(	) = YL(	)YL ′′(	).

Equations (27) and (28) look formally similar to the usual
MSE. However we notice that due to the relations (24)–(25)

and the similar there are only two expansion parameters in
the theory. They are related to the AM components of RL ′ L
in the expansion (26) in cell j and in the outer region C	o.
No convergence constraints related to the re-expansion of
the various Bessel and Hankel functions around a different
origin (17)–(19) are present.

It is interesting to note that the truncation value for both
indices is the same and corresponds to the classical relation
lmax = k R j

b , where R j
b is the radius of the bounding sphere of

the cell at site j . This is true for the index L, which reminds
us that the basis function �L is normalized like jl(kr)YL near
the origin. Due to the properties of the Bessel functions,
when l � k R j

b , �L becomes very small inside the cell,
decreasing like [(2l + 1)!!]−1. Therefore its weight in the
expansion (26) will be negligible. The other index L ′, as
will be clear from the following, measures the response of the
truncated potential inside the cell to an incident wave JL ′ of
angular momentum L ′. Due to the same argument as above,
familiar to scattering theory, the scattering matrix T j

L ′ L will
decrease like [(2l+1)!!(2l ′+1)!!]−1. As a consequence E j and
S j can be considered square matrices. In the case of the outer
sphere region C	o, the situation is inverted, the index L being
related to the response of the entire cluster to an incident wave
of angular momentum L, whereas the index L ′ corresponds to
the number of AM waves mixed in by the potential, not only
inside 	o but also in C	o. The two indices have the same
truncation lmax = k R̃o

b , provided we take R̃o
b as the radius of the

sphere that contains the region of space where the potential is
substantially different from zero. This conclusion is reinforced
by the observation that one can cover this same region only by
atomic and empty cells.

The fact that E and S can be taken to be square matrices
leads to another interesting form of the MSE. Under the
assumption that DetS 
= 0, we can introduce new amplitudes

BL(k) =
∑

L ′
SL L ′ AL ′(k) (33)

which is equivalent to using new basis functions �L related to
�L by the relation

�L =
∑

L ′
(S̃−1)L L ′�L ′ (34)

where S̃ is the transpose of the matrix S.
Defining the quantities

(T i )−1 = −Ei(Si )−1 (35)

T
o = −Eo(So)−1 (36)

(notice the asymmetry between sites i and site o) we can write
equations (27) and (28) as

∑

L ′
(T i)−1

L L ′ Bi
L ′(k)−

j 
=i∑

j,L ′
Gi j

L L ′ B
j
L ′(k)−

∑

L ′ L ′′
J io

L L ′ T
o
L ′ L ′′ Bo

L ′′(k)

= I i
L (k) (37)

j 
=o∑

j,L ′
J oj

L L ′ B
j
L ′(k)− Bo

L(k) = 0. (38)

6
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The meaning of the amplitudes BL(k) is immediately
found from these equations if we consider only a single
truncated potential at center i , i.e. if we put Gi j

L L ′ ≡ 0. It is
the scattering amplitude of angular momentum L in response
to an exciting plane wave of wavevector k.

In the case of many cells, it is expedient to work
only in terms of the cell amplitudes Bi

L ′(k). Inserting into
equation (37) the expression for Bo

L ′(k) given by equation (38)
we obtain

∑

L ′
(T i)−1

L L ′ Bi
L ′(k)−

j 
=i∑

j,L ′
Gi j

L L ′ B
j
L ′(k)

−
∑

j L ′

∑

′
J io

LT
o
′ J

oj
′ L ′ B

j
L ′(k) = I i

L(k). (39)

Introducing τ , the inverse of the multiple-scattering matrix
M ≡ T −1 − G − J T

o
J

τ = (T −1 − G − J T
o

J )−1 (40)

known as the scattering path operator [10], we derive from
equation (39) that

Bi
L(k) =

∑

j L ′
τ

i j
L L ′ I

j
L ′(k). (41)

If we insert this expression in equation (38) and remember that
by definition Bo

L(k) = ∑
L ′ T o

L L ′ Ão
L ′ , we easily find for the

cluster T -matrix

T o
L L ′ =

∑

i j

∑

′
J oi

Lτ
i j
′ J

jo
′ L ′ . (42)

Since the matrices G and J are also symmetric (see
definitions (20) and (21)), we find that τ is likewise symmetric,
implying the symmetry of T o

L ′L , again in keeping with
scattering theory. This quantity indeed represents for the
whole cluster the scattering amplitude into a spherical wave
of angular momentum L in response to an exciting wave
of AM L ′ and is needed for example in electron molecular
scattering [22]. Finally equation (41) shows that the quantities
Bi

L(k) are scattering amplitudes for the cluster, for which the
generalized optical theorem holds (for real potentials) [20, 22]

∫

dk̂ Bi
L(k)

[
B j

L ′(k)
]∗ = − 1

π
Im τ i j

L L ′ . (43)

This relation is very important, since it establishes the
connection between the photo-emission and the photo-
absorption cross section, as illustrated below. As it will turn
out, − Im τ i i

L L is proportional to the L-projected density of
states onto site i .

3.2. Bound states

The MSE in the case of bound states can be derived from those
for scattering states, by simply eliminating the exciting plane
wave in equation (5) and taking the analytical continuation to
negative energies in the free Green’s function G+

0 (r
′ − r; k),

in order to impose the boundary condition of decaying waves

when r ′ → ∞. In this case the Lippmann–Schwinger equation
reduces to the eigenvalue equation

ψ(r′) =
∫

G+
0 (r

′ − r; k)V (r)ψ(r) d3r (44)

where we have dropped the label k in the wavefunction ψ(r′).
Since the expansion of G+

0 (r
′ − r; k) in terms of Bessel

and Hankel functions in equations (8) and (9) remains valid
under the analytical continuation to negative energies, so that
k = √

E = i
√|E | = iγ , we see that ψ(r′) behaves like

eikr ′
/r ′ = e−γ r ′

/r ′ for r ′ → ∞. We recall that

h+
l (kr) = −i−l K 1

l (γ r); h−
l (kr) = −i−l(−1)l K 2

l (γ r)

jl(kr) = i l Il(γ r); nl(kr) = i l+1 (−1)l+1 K 1
l + K 2

l

2
(45)

where Il is the modified spherical Bessel and K 1
l , K 2

l
the modified Hankel functions of first and second kind,
respectively. Not only the expansions in equations (8) and (9),
but also the re-expansion relations in equations (17)–(19)
remain valid under analytical continuation with the same
convergence properties. This fact implies that we can derive
the MSE for bound states following the same patterns as
for scattering states, except that now the behavior of the
wavefunction in the outer region C	o is

ψ(ro) =
∑

L

Ao
L�

o
L(ro)

=
∑

L

Ao
L

∑

L ′
Ro

L ′ L(ro)YL ′(r̂o). (46)

The functions �o
L(ro) are now real and can easily be

found by inward integration in the outer region starting from
an asymptotic WKB solution properly normalized, e.g. like
[(2l + 1)!!]−1.

Working with the BL amplitudes we easily arrive at the
following condition for the existence of a bound state

∑

j L ′

{

(T i)−1
L L ′δi j − (1 − δi j)G

i j
L L ′ −

∑

L ′ L ′′
J io

L L ′ T
o
L ′ L ′′ J

oj
L ′′L ′

}

B j
L ′

= 0 (47)

which is the same as equation (39), except that the exciting
plane wave term I i

L (k) and the k dependence has been dropped.
Notice that we have kept the arbitrariness of V0 in the free
Green’s function, in order to check that the eigenvalues do not
depend on it. In the spirit of the analytical continuation, we
have a definite rule on how to calculate the various quantities
as a function of k.

We now define

CL L ′ = (Rb)
2W [nl , RL L ′ ] (48)

so that, remembering equation (36)

k−1(T j)−1 = (K j )−1 + i = −C j(S j )−1 + i (49)

k−1T
o = K

o + i = −Co(So)−1 + i. (50)

Moreover we observe that

k−1Gi j
L L ′ = Ni j

L L ′ − i J i j
L L ′ (51)

7
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Table 1. Eigenvalues of the hydrogen molecular ion (in Ryd) [19].

Mol. orb. n l m Exact
Smith and
Johnson [23] Foulis [24]

22 EC
V0 = −1.90

22 EC
V0 = 0

No EC
V0 = −1.90

No EC
V0 = 0

1a1g 1 0 0 −2.205 25 −2.071 6 −2.189 73 −2.205 22 −2.2055 −2.2050 −2.2048
2a1g 2 0 0 −0.721 73 −0.707 38 −0.720 93 −0.723 −0.724 −0.731 −0.726
3a1g 3 2 0 −0.471 55 −0.455 74 −0.471 02 −0.472 7 −0.478 −0.476 −0.474
4a1g 3 0 0 −0.355 36 −0.348 59 −0.355 25 −0.356 −0.3550 −0.357 −0.356
1a2u 2 1 0 −1.335 07 −1.286 8 −1.334 26 −1.334 8 −1.3348 −1.3342 −1.3343
2a2u 3 1 0 −0.510 83 −0.497 22 −0.510 85 −0.510 72 −0.5105 −0.5104 −0.5104
3a2u 4 1 0 −0.274 63 −0.269 79 −0.274 66 −0.274 69 −0.2742 −0.2745 −0.2745
4a2u 4 3 0 −0.253 29 −0.249 97 −0.253 29 −0.254 −0.2536 −0.2541 −0.253 01
1e1g 3 2 1 −0.453 40 −0.446 46 −0.453 33 −0.4545 −0.453 32 −0.455 −0.455
1e1u 2 1 1 −0.857 55 −0.888 66 −0.855 85 −0.857 54 −0.856 1 −0.870 −0.858

Figure 2. Partitioning of the space for the hydrogen molecular ion
with no empty cells.

where Ni j
L L ′ is defined in equation (23) and that

∑
L ′′ J io

L L ′′ J
oj
L ′′L ′

= J i j
L L ′ , since J is the translational operator. Substituting these

relations into equation (47) and eliminating the common factor
k−1 we finally find

∑

j L ′

{

(K i)−1
L L ′δi j − (1 − δi j)N

i j
L L ′ −

∑

L ′L ′′
J io

L L ′ K
o
L ′ L ′′ J

oj
L L ′

}

B j
L ′

= 0. (52)

The generic (L L ′)-element of this MS matrix is either real
for real k (E > 0) or proportional to i l−l′+1 for imaginary k
(E < 0). Indeed, due to the relations (45), putting for short
Kl = [(−1)l+1 K 1

l + K 2
l ]/2, we easily find that

NL L ′ = 4π i l−l′+1
∑

L ′′
C(L, L ′; L ′′)(−1)l

′′
Kl′′ (|k|Ri j)YL ′′(Ri j)

(K i)−1
L L ′ = −i l−l′+1

[
Ci(Si)−1

]
L L ′

K
o
L L ′ = −i l−l′+1

[
Co(So)−1

]
L L ′

where C and S are defined in terms of the modified Bessel and
Neumann functions as the corresponding quantities.

Therefore the condition for a bound state becomes
DetM = 0, where M is the MS matrix in equation (52) after a
unitary transformation that eliminates the imaginary factors.

We applied the theory above to find the exact eigenvalues
of the hydrogen molecular ion. In this case we partition
the space into three regions, as illustrated in figure 2, two
truncated spheres around the protons with a radius of 1.72 au
corresponding to cells 	I and 	II and an external region
labeled 	III, corresponding to the complementary domain
C	o. The bounding sphere of this latter is represented by
the dashed circle with radius 1.4 au, larger than one half the
distance of the protons. By calling the region outside this circle
C	b, the potential is taken to be zero (or constant) into the
intersection of this domain with cells 	I and 	II, and equal to
the value of the true potential in the intersection with C	o. We
also did a calculation with the two atomic cells, 22 empty cells
surrounding them, plus an external region.

Our findings are listed into table 1 and compared with
the exact results. The last two columns show the eigenvalues
obtained with two different values of V0, respectively equal
to −1.90 Ryd and 0, showing the independence of the results
from the constant interstitial value V0. The columns with the
label ‘22 EC’ refer to the calculation with two atomic cells, 22
empty cells and an external region, showing the independence
of the result from the partitioning mode of the space. The
column labeled ‘Smith and Johnson’ refers to the calculation
by Smith and Johnson [23] in the MT approximation, whereas
the one labeled ‘Foulis’ quotes the result by Foulis [24]
obtained with the distorted wave approximation.

4. Spectroscopic response functions

Having found an expression for the scattering states, we are
now in a position to write down the response functions for
various spectroscopies. The detailed derivation is given in [25].

In the independent electron approximation, the core level
photo-electron diffraction (PED) cross section for the ejection
of a photo-electron along the direction k̂ and energy E = k2

from an atom situated at site i is given by

dσ

dk̂
= 8π2αh̄ω

∑

mc

∣
∣〈�ψ(ri ; k)|ε̂ · ri |φc

Lc
(ri )〉

∣
∣2
. (53)

Here � is the time-reversal operator, ε̂ the polarization of
the incident photon and φc

Lc
(ri ) the initial core state of

angular momentum Lc (we neglect for simplicity the spin–orbit
coupling, which can be easily taken into account). Due to the

8
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Figure 3. Cross section for Li2+ with 15 cells compared to the
analytical result. The solution for a MT central sphere is also
shown [11].

localization of the core state, we need only the expression of
the continuum scattering state in the cell of the photoabsorber,
given by

ψ(ri ; k) =
∑

L

Bi
L(k)�L (ri) (54)

so that

dσ

dk̂
= 8π2αh̄ω

∑

mc

∣
∣
∣
∣

∑

L

MLc L(E)B
i
L(k)

∣
∣
∣
∣

2

(55)

where Bi
L(k) is given by equation (41) and we have defined the

atomic transition matrix element

MLc L (E) =
∫

	i

drφc
Lc
(r)ε̂ · r�L(r). (56)

The total absorption cross section, in the case of real
potentials, is obtained by integrating the PED cross section
over all directions of photo-emission
∫

dk̂
dσ

dk̂
= 8π2αh̄ω

∑

mc

∫

dk̂

∣
∣
∣
∣

∑

L

MLc L (E)B
i
L(k)

∣
∣
∣
∣

2

= − 8παh̄ω
∑

mc

∑

L L ′
MLc L(E) Im τ ii

L L ′ MLc L ′ (57)

by application of the optical theorem (43).
This is the form of the absorption cross section that one

would obtain starting from its expression in terms of the
Green’s Function (GF)

σtot(ω) = −8παh̄ω

×
∑

mc

Im
∫

〈φc
Lc
(r)|ε̂ · r|G(r, r′; E)|ε̂ · r′|φc

Lc
(r′)〉 dr dr′.

(58)

Indeed, for general (possibly complex) potentials, the GF
of the cluster can be written as [10, 26]

G(ri , r′
j ; E) = 〈�(ri )|(τ i j − δi j T

i)|�(r′
j )〉

+ δi j〈�(r<)|T i |�(r′
>)〉 (59)

where r< (r>) indicates the lesser (the greater) between ri

and r ′
i . The function �(r) is the irregular solution in cell i

that matches smoothly to H̃ +
L ′(r) at Ri

b. For short we have
represented the sum over the angular momentum indices with
a bra and ket notation (e.g.)

〈�(ri )|τ i j |�(r′
j )〉 =

∑

L L ′
�L (ri )τ

i j
L L ′�L ′(r′

j). (60)

Moreover, for simplicity of derivation we have assumed no
contribution from the outer region potential (i.e. T

o ≡ 0)
allowing empty cells to cover the volume 	o up to the point
at which the asymptotic behavior in equation (12) starts to
be valid. The modifications needed in the case T

o 
= 0 are
obvious.

Now, from the relation

�L(ri ) =
∑

L ′
JL ′(ro; k)(T −1)iL ′ L + H̃ +

L (ro; k) (61)

by continuity we derive inside cell i the relation

�L(ri ) =
∑

L ′
L ′(ri; k)(T −1)iL ′ L +�L(ri; k) (62)

where L ′(ri ) is the irregular function joining smoothly to
JL ′(ro; k) at Ri

b. Therefore the Green’s function takes the form

G(ri , r′
j ; E) = 〈�(ri )|τ i j |�(r′

j )〉−δi j〈�(r<)|(r′
>)〉. (63)

For real potentials, both �L and L are real, so that
equation (58) reduces to equation (57). In this case the quantity
∫
	i

G(r, r; E)d3r = −(1/π)∑L Im τ ii
L L

∫
	i
�

2
Ld3r is the

projected density of states on site i at energy E , expressed as a
sum of the partial densities of type L.

5. Applications

We have tested the present FP-MS scheme against the
analytical solution of the absorption cross section for
hydrogen-like atoms given by [27]

σ(k) = 4π2α
27

3

1

Z 2

(
1

1 + ( k
Z )

2

)4
e−4 Z

k tan−1( k
Z )

1 − e−2π Z
k

in the case of the Li2+ atom (Z = 3). Even though the potential
is spherically symmetric in the whole space with respect to the
atomic center so that it is easy to reproduce numerically the
cross section, this is not obvious in the MS scheme.

To this purpose we have partitioned the space inside a
sphere of radius R = 8.6 au into an atomic sphere of 4.15
au and 14 other empty spheres, all truncated so that the
resulting polyhedra do not overlap and such that their bounding
spheres do not overlap more than 40%. To calculate the
contribution of the outer sphere we integrated inwardly the
Coulomb potential. Figure 3 shows the almost exact agreement
between the analytical and the numerical result, indicating
that the partitioning procedure for solving the SE is able to
reconstruct the global solution. Moreover the oscillations due
to the truncation of the potential inside each cell (shown by
the solution for a truncated central sphere with radius 4.15 au)

9
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Figure 4. (a) Cross section for GeCl4 molecule with nine scattering cells located at the sites of a BCC lattice, compared with the MT result
and experiment. (b) Study of its convergence rate as a function of lmax up to lmax = 10 [11].

cancel each other, showing that at a common boundary the
overall solutions inside two adjacent cells are continuously
smooth. For this test a value of lmax = 4.15

√
3 ∼ 8 was taken

at the end of the energy interval Emax = 3 Ryd.
Figure 4(a) shows an application of the method to the

calculation of the Ge K-edge absorption spectrum of the
tetrahedral molecule GeCl4 [28]. The MT approximation could
never reproduce the first bump after the main transition. Its
appearance is due to the introduction of the anisotropy of the
potential inside the atoms and the presence of four empty
Voronoi cells completing the BCC unit cell. An lmax = 4 was
sufficient to reach convergence of the spectrum, as verified by
using higher l values up to lmax = 10 (figure 4(b)).

Then we show the application of the present FP-MS
theory to two cases which, according to our experience, need
significant non-MT corrections for a good reproduction of the
absorption data: diatomic (and in general linear) molecules and
tetrahedrally coordinated compounds.

The first example is illustrated in figure 5, showing the
experimental unpolarized K-edge absorption cross section of
the diatomic molecule Se2 [29, 30] together with an NMT
and an MT calculation. For the NMT case we partitioned the
space with 24 Voronoi polyhedra arranged on a BCC lattice:
two of them around the physical atoms and 22 empty cells
(EC) to cover the rest of the space where the density (and
the potential) are significantly different from zero. We gave a
finite imaginary to the energy of the order of the experimental
resolution (1.0 eV) in order to be able to use the same
Green’s function expression for the cross section (58) both for
bound and continuum states. The energy zero in the figure
corresponds to the onset of the continuum. Below it there
are two unoccupied empty states, at energies approximately
−5 and −7 eV. To calculate the absorption spectrum, we used

Figure 5. K-edge unpolarized absorption cross section for the Se2

molecule, showing the comparison between the MT and FP-MS
calculations against the experimental data [19].

the real part of an Hedin–Lundqvist (HL) potential and then
convolved the result with a Lorentzian whose width is equal
to the that of the core hole (2.33 eV). A similar calculation
without empty cells gave substantially the same result. We see
that the agreement with experiment is reasonably good, apart
from the intensity of the first bound state that is higher than
the second. Using an Xα potential corrects for this discrepancy
but worsens the agreement around the minimum, which turns
out to much shallower. This is a typical case in which the
NMT approach is useful for the study of the effective optical
potential, since there are no other approximations in the theory.
In contrast, the MT approximation of the potential turns out
to be rather poor, since in this case the second bound state is
pushed up toward the continuum threshold.

The second example concerns the L2,3 edge of crystalline
SiO2 (α-quartz). The MT approximation in tetrahedrally
coordinated materials is usually not satisfactory, due to the

10
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Figure 6. L-edge unpolarized absorption cross section for α-quartz,
showing the comparison between the MT and FP-MS calculations
against the experimental data. The 1 eV splitting between the
L2,3-edges has been neglected. The cluster radius was 5 Å [19].

bad representation of the anisotropy of the potential in the
interstitial region, as already found in the case of GeCl4 [11].
Figure 6 shows the comparison between the MT and NMT
calculations against the experimental data, obtained by an
electron energy loss technique [31]. We used a complex HL
potential and a 5 Å cluster, composed of 49 atomic cells,
containing 19 Si and 30 O, and 22 empty cells (EC), in total
71 cells. In order to obtain the first peak it was essential to
include four EC in the first coordination shell, a feature already
observed in GeCl4, although better details were obtained with
further inclusions of EC. We also checked the convergence
of the calculated spectrum with the size of the cluster, up to
10 Å, obtaining the splitting of the first peak, as observed
experimentally, and rather similar features for the rest of the
spectrum. This finding confirms the fairly localized nature
of the final 3d states in this compound. No experimental
resolution (0.5 eV) was taken into account beyond the damping
due to the imaginary part of the HL potential. More details will
be given elsewhere.

6. Conclusions

We have developed an FP-MS scheme which is a straightfor-
ward generalization of the usual theory with MT potentials and
implemented the code to calculate cross sections for several
spectroscopies, such as absorption, photo-electron diffraction
and anomalous scattering, as well as bound states, by a simple
analytical continuation. The key point in this approach is the
generation of the cell solutions �L(r) for a general truncated
potential free of the well known convergence problems of AM
expansion together with an alternative derivation of the MSE
which allows us to treat the matrices S and E as square, with
only one truncation parameter, given by the classical relation
lmax ∼ k Rb. The fact that the theory can work with square S
and E matrices is of the utmost importance, since this feature
allows the definition of the cell T matrix and its inverse, reviv-
ing in such a way the possibility to define the Green’s function
and to treat a host of problems, ranging from solids with re-
duced symmetry to randomly disordered alloys in the context
of the CPA, as mentioned in the introduction. In this way one
can also show that the wavefunction and the Green’s function

approach provide the same expression for the absorption cross
section for continuum states and real potentials, through the
application of the generalized optical theorem (43). For transi-
tions to bound states the two methods are not equivalent, due to
the different normalization of continuum and bound states, un-
less one normalizes the wavefunctions for these to one. How-
ever this procedure, although feasible, is rather cumbersome
(this was one of the reasons for abandoning the MS method in
favor of the simpler linearized methods in band-structure cal-
culations). In this case the Green’s function expression for the
cross section (58) can be used, since it gives the correct nor-
malization in both cases simply by analytical continuation. We
have exploited this fact when calculating the cross section for
the Se2 diatomic molecule.

Moreover, in [19], we have been able to show that the
FP-MST converges absolutely in the lmax → ∞ limit. We
have thus given a firm ground to its use as a viable method
for electronic structure calculation ([6, 7] and references
therein) and at the same time have provided a straightforward
extension of MST in the muffin-tin (MT) approximation for the
calculation of x-ray spectroscopies. Also Quantum Chemistry
calculations might benefit from this method in that it avoids the
use of basis function sets.

Finally it is worth mentioning that in giving a new scheme
to generate local basis functions for truncated potential cells,
we have provided an efficient and fast method for solving
numerically a partial differential equation of the elliptic type in
polar coordinates, which can also be used to solve the Poisson
equation in the whole space by the partitioning method.
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